医工互联

 找回密码
 注册[Register]

手机动态码快速登录

手机号快速登录

微信登录

微信扫一扫,快速登录

QQ登录

只需一步,快速开始

查看: 205|回复: 0
收起左侧

“拍核磁”,究竟拍的是什么?

[复制链接]

  离线 

发表于 2023-6-11 15:24:55 | 显示全部楼层 |阅读模式 <
如今,当我们走进医院,一定能感受到核医学技术无所不在:X射线成像、CT成像、磁共振成像、各种放射治疗技术等为我们的健康保驾护航,也极大地促进了现代医学的发展。


我们通常听到的“拍核磁”,其实就是磁共振成像(MRI),又叫核磁共振成像。自1937年,拉比(Isador Isaac Rabi)发现核磁共振的现象开始,磁共振技术在随后的几十年中迎来了飞速发展,如今已成为临床检查和诊断中必不可少的设备。在整个磁共振技术的发展中,一共有6次诺贝尔奖诞生。


1.png

图1 Isador Isaac Rabi(1898-1988)因发现核磁共振现象获得了1944年的诺贝尔奖。图源| researchgate


2.png

图2 核磁共振成像技术的发展 图| 俞博毅


拍核磁,究竟拍的是什么?磁共振设备是如何得到我们身体内组织结构的影像的呢?我们可以从“核”、“磁”、“共振”、“成像”这几个部分去理解。


核磁共振成像的“核”


我们知道人体是由原子构成的,而原子中包含了原子核和核外电子。核磁共振的“核”其实就是原子核。原子核的类型有很多种,每一种原子核都可以进行核磁共振成像吗?当然不是,只有磁性原子核才可以进行核磁共振成像。


原子核的磁性来源于原子核的磁矩,而原子核的磁矩又源于原子核有自旋角动量。我们可将原子核视为一个球体,所有的磁性原子核都具有一个特征,那就是绕着自己的轴高速旋转,我们把原子核的这一特性称之为自旋(Spin)。


简单来讲,原子核内的质子和中子的数目决定了原子核是否为磁性原子核。若原子核内的质子数和中子数均为偶数,则这样的核不能自旋产生核磁,是非磁性核,反之则为磁性原子核。
3.png



由于原子核表面带正电,磁性原子核自旋就会产生环电流,从而产生具有一定大小和方向的磁化矢量。我们把这种由磁性原子核自旋产生的磁场称为核磁。
4.jpeg

图3 我们可以把原子核想象成一个球体。原子核表面的正电荷高速旋转产生环电流,环电流进而会产生一定大小和方向的磁化矢量。图|李佳昕


即便如此,我们的身体中仍然有较多的磁性原子核,选择什么样的磁性原子核来进行我们人体的磁共振成像呢?


5.png

表 人体内常见的磁性原子核 数据源|《磁共振成像技术指南---检查规范,临床策略及新技术应用》


如上表所示,氢原子核在人体内含量最高,而且磁化率也是最高的,所以我们一般用氢原子核进行磁共振成像。因此,拍核磁,拍的就是“氢原子核”,也可以被称为“质子”(因为氢原子核里没有中子,只有一个质子)。


人体内的氢原子核主要来自于三类化合物——水、脂肪、蛋白质,但是蛋白质内的氢原子核一般没有MRI信号,所以人体中的MRI信号主要来自于水,部分组织中的信号也来自于脂肪。


核磁共振成像的“磁”


既然我们身体中的氢原子核都具有核磁,我们每个人身体里数以亿万计的氢原子核都会产生磁场,我们为什么没有成为万磁王?


6.png

图4 万磁王是漫威漫画公司旗下的超级反派,他可以控制任何形式的磁场。图源| 百度百科


这是因为我们身体中的氢原子核具有无序性,各个方向的磁化矢量相互抵消,所以宏观上我们是不具有磁性的。


那么,如何观测身体内的磁共振信号呢?


每一个氢原子核产生的磁场类似于一个小磁针,会在磁场中受到力的作用而偏转。如果我们外加一个主磁场,由于磁场中力的作用,氢原子核产生的磁化矢量就会与主磁场方向平行同向或者平行反向。


与主磁场平行同向的质子,不需要对抗主磁场的作用而处于低能级;与主磁场平行反向的质子,需要对抗主磁场的作用而处于高能级。低能级的质子略多于高能级的质子,整体在宏观上表现为与主磁场同向的磁化矢量。


7.png

图5 A,体内质子在无磁场的作用下,每个质子的磁化矢量都处于不同方向; B,当人体处于外磁场中,在外磁场作用下,体内质子的磁化矢量就会朝向两个方向。图| 俞博毅


这就像是在操场军训的学生,中场休息时,大家原本在随意活动。但是,当听到教官的口令“面向阳光和背向阳光,站成两排”时,同学们就会马上站成两排。由于难以忍受刺眼的阳光,更多的同学本能地会站在背向阳光的那排。


需要注意的是,在磁场中的氢原子核,并不是完全与主磁场方向平行,而是存在一定的角度。因此氢原子核在主磁场中除了自旋外,还会绕着主磁场方向的轴进行转动,其运动的方式就像地上倾斜的陀螺一样。我们把这种运动叫做拉莫尔进动(Larmor procession)。


8.jpeg

图6 自旋的质子在磁场中像陀螺一样进动。图|李佳昕


拉莫尔进动的频率ω可以用以下的公式描述:
9.png

其中γ是原子核的磁旋比,一般是一个常数;B为主磁场强度。氢原子核的磁旋比为42.5MHz/T。


核磁共振成像的“共振”


提到共振,大家很容易能想到初中学过的声音的共振。声音共振的条件是声波与音叉的振动频率一致,类似的,核磁共振的条件是外加的射频脉冲与质子的拉莫尔进动频率一致。


前面讲到,在磁场的作用下,宏观上体内质子产生与主磁场相同的磁化矢量(Mz),微观上其实是处于不同能级的质子数量不同,而这种能级的分裂只有磁场存在时才会产生。


就像给背向阳光的同学一顶遮阳帽,让他也站到面向阳光的那一排去,当我们施加一个与质子进动频率一致的射频脉冲,则低能级的质子会发生共振、吸收射频能量而跃迁到高能级,此时高能级质子数量逐渐增多。


当高能级质子与低能级质子数量一致时,磁化矢量相互抵消,则质子在宏观上表现为主磁场方向的磁化矢量为0(如图7左侧下所示)。


但与此同时,由于射频的聚相位效应,会把XY方向的磁化矢量聚集到一起产生XY平面的宏观磁化矢量,绕磁场转动。这个聚相位作用,就像我们的五个手指本来是张开的,五个手指处于各个方向,如果每个手指代表一个力,则合力为零;当我们将手指合拢,则合力方向就是五个手指聚拢的方向。(如图7右侧下所示)


10.png

图7 在磁场作用下,氢原子核能级分裂,并在射频脉冲作用下发生核磁共振,产生能级跃迁。图| 俞博毅
磁共振成像的“成像”


当我们撤去射频脉冲,则高能级的质子又会逐渐回到低能级。宏观上就表现为纵向磁化矢量的逐渐恢复(纵向弛豫,图8)和横向磁化矢量的逐渐衰减(横向弛豫,图9)。


11.png

图8 纵向磁化矢量逐渐恢复 图| 李佳昕


12.jpeg

图9 横向磁化矢量逐渐衰减 图| 李佳昕


由于人体内组织含氢原子核的数量不同,氢原子核所处的化学环境不同,所以纵向和横向弛豫的过程不一样,相应的,磁化矢量恢复的时间也就不同。


因此,通过设置MRI序列,我们就可以采集到组织的信号。不同组织的MRI信号强度不同,我们就能得到体内组织的对比图像。


我们是如何采集磁共振信号的呢?其实非常简单,高中物理课告诉我们“磁感线切割线圈会产生电流”,因此,用旋转的XY方向的磁化矢量去切割线圈就能得到磁共振产生的电信号,进而运用数学方法对电信号进行转换,就能获得磁共振图像了。


我是一个大院小贴士


注意:铁磁性金属(如铁、钴、镍)物体很容易被磁场吸进去,假如把这些金属制品带进核磁共振室,后果可能会很严重。MRI仪器产生的磁场,不仅可以对铁磁性金属产生强大的作用力,还会让那些金属材料发热,这两个问题都有可能对人体造成伤害。


做核磁检查前,病人与需要进入检查室的陪检人员必须将金属物品全部去除,留在检查室之外。千万不要抱有“我只是检查胳膊,戴个耳钉不影响”“身上的金属就一小块”之类的想法,不仅容易影响图像的质量,甚至会对人身安全造成威胁


体内有金属植入物的患者,在未确认植入物是否可以进行核磁共振检查之前,应与医生进一步沟通确认,以免因磁共振造成植入物移位或发烫灼伤周围组织。


总之,拍核磁一定要听医嘱呀!


参考文献
[1] 俎栋林,高家红. 核磁共振成像—-物理原理和方法. 北京:北京大学出版社, 2014. 9.
[2] 杨正汉,冯逢,王霄英. 磁共振成像技术指南——检查规范,临床策略及新技术应用. 北京:人民军医出版社, 2010.
[3] Breneman, B. History, Physics, and Design of Superconducting Magnets for MRI. Emagres 8, 137-156.
[4] Collins, J. The history of MRI. Semin. Roentgenology 43, 259-260.




作者:俞博毅 李佳昕
指导老师:陈卫强
来源:中科院近代物理所
回复

使用道具 举报

提醒:禁止复制他人回复等『恶意灌水』行为,违者重罚!
您需要登录后才可以回帖 登录 | 注册[Register] 手机动态码快速登录 微信登录

本版积分规则

发布主题 快速回复 收藏帖子 返回列表 客服中心 搜索
简体中文 繁體中文 English 한국 사람 日本語 Deutsch русский بالعربية TÜRKÇE português คนไทย french

QQ|RSS订阅|小黑屋|处罚记录|手机版|联系我们|Archiver|医工互联 |粤ICP备2021178090号 |网站地图

GMT+8, 2024-12-22 14:45 , Processed in 0.270682 second(s), 66 queries .

Powered by Discuz!

Copyright © 2001-2023, Discuz! Team.

快速回复 返回顶部 返回列表