1.Jesse Hamilton,Dominique Franson,Nicole Seiberlich. Recent advances in parallel imaging for MRI[J]. Progress in Nuclear Magnetic Resonance Spectroscopy,2017,101.
2.核磁共振成像学.俎栋林-北京:高等教育出版社,2004.1.IBSN 7-04-012966-3
3.何汶静,陈晓文,朱高杰,罗海.磁共振图像处理中部分傅里叶重建算法的比较[J].重庆医学,2016,45(20):2804-2806+2809.
4.Klaas, P, Pruessmann, et al. SENSE: Sensitivity encoding for fast MRI[J]. Magnetic Resonance in Medicine, 1999.
5.Blaimer M,Breuer F,Mueller M,et a1.SMASH,SENSE,PILS,GRAPPA:How to Choose the Optimal Method[J] Topics in Imaging,2004,15(4):223
6.Sodickson D K,Manning W J.Simultaneous Acquisition of Spatial Harmonics(SMASH):Fast Imaging with Radiofrequency Coil Arrays[J].Magnetic Resonance in Medicine,1997,38(4):591—603.
7.akob P M,Griswold M A,Edelman R R,et a1.AUTO-SMASH:A Self—Calibrating Technique for SMASH Imaging [J].Magnetic Resonance Materials in Physics,Biology and Medicine,1998,7(1):42—54.
8.Heidemann R M,Griswold M A,Haase A,et a1.VD-AUTO—SMASH Imaging[J].Magnetic Resonance in Medicine, 2001,45(6):1066—1074.
9.M.A. Griswold, P.M. Jakob, R.M. Heidemann, M. Nittka, V. Jellus, J. Wang, B. Kiefer, A. Haase, Generalized autocalibrating partially parallel acquisitions (GRAPPA), Magnet Reson Med, 47 (2002), 1202-1210. doi:10.1002/mrm.10171
10.M. Lustig, J.M. Pauly, SPIRiT: Iterative self-consistent parallel imaging reconstruction from arbitrary k-space, Magn. Reson. Med. 64 (2010) 457–471.
11.M. Murphy, M. Alley, J. Demmel, K. Keutzer, S. Vasanawala, M. Lustig, Fast l1- SPIRiT compressed sensing parallel imaging MRI: scalable parallel implementation and clinically feasible runtime, IEEE Trans. Med. Imag. 31 (2012) 1250–1262.
12.M. Uecker, P. Lai, M.J. Murphy, P. Virtue, M. Elad, J.M. Pauly, S.S. Vasanawala, M. Lustig, ESPIRiT - an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA, Magn. Reson. Med. 71 (2014) 990–1001.
13.M. Barth, F. Breuer, P.J. Koopmans, D.G. Norris, B.A. Poser, Simultaneous multislice (SMS) imaging techniques, Magn. Reson. Med. 75 (2016) 63–81.
14.M. Weiger, K.P. Pruessmann, P. Boesiger, 2D SENSE for faster 3D MRI, Magn. Reson. Mater. Phys. Biol. Med. 14 (2002) 10–19.
15.M. Blaimer, F.A. Breuer, M. Mueller, N. Seiberlich, D. Ebel, R.M. Heidemann, M. A. Griswold, P.M. Jakob, 2D-GRAPPA-operator for faster 3D parallel MRI, Magn. Reson. Med. 56 (2006) 1359–1364.
16.F.A. Breuer, M. Blaimer, M.F. Mueller, N. Seiberlich, R.M. Heidemann, M.A. Griswold, P.M. Jakob, Controlled aliasing in volumetric parallel imaging (2D CAIPIRINHA), Magn. Reson. Med. 55 (2006) 549–556.
17.B. Bilgic, B.A. Gagoski, S.F. Cauley, A.P. Fan, J.R. Polimeni, P.E. Grant, L.L. Wald, K. Setsompop, Wave-CAIPI for highly accelerated 3D imaging, Magn. Reson. Med. 73 (2015) 2152–2162.
18.LUSTIG M, DONOHO D, PAULY JM. Sparse MRI: The application of compressed sensing for rapid MR imaging.[J]. Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine,2007,6(6).
19.LIANG D, LIU B, WANG J, et al. Accelerating SENSE using compressed sensing[J]. Magn Reson Med, 2009, 62(6): 1574-1584.
20.HUANG Li-jie, SONG Yang, ZHAO Xian-ce, XIE Hai-bin, WU Dong-mei, YANG Guang. A New Combination Scheme of GRAPPA and Compressed Sensing for Accelerated Magnetic Resonance Imaging[J]. Chinese Journal of Magnetic Resonance, 2018, 35(1): 31-39.
21.LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015 may;521(7553):436–444. http://dx.doi.org/10.1038/ nature14539.
22. Wang S , Su Z , Ying L , et al. Accelerating magnetic resonance imaging via deep learning[C]// 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI 2016). IEEE, 2016.
23.Jure Zbontar, Florian Knoll, Anuroop Sriram, et al. fastMRI: An Open Dataset and Benchmarks for Accelerated MRI.[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2018, abs/1811.08839
24.Lee D, Yoo J, Tak S, Ye JC. Deep Residual Learning for Accelerated MRI Using Magnitude and Phase Networks. IEEE Trans Biomed Eng 2018;65(9):1985-1995.
25.Mardani M, Gong E, Cheng JY, Vasanawala SS, Zaharchuk G, Xing L, Pauly JM. Deep Generative Adversarial Neural Networks for Compressive Sensing MRI. IEEE Trans Med Imaging 2019;38(1):167-179.
26.Schlemper J, Caballero J, Hajnal JV, Price AN, Rueckert D. A Deep Cascade of Convolutional Neural Networks for Dynamic MR Image Reconstruction. IEEE Trans Med Imaging 2018;37(2):491-503.
27.Zhu B, Liu JZ, Cauley SF, Rosen BR, Rosen MS. Image reconstruction by domain transform manifold learning. Nature 2018;555(7697):487-492.
28.Liang D, Cheng J, Ke Z, Ying L. Deep MRI Reconstruction: Unrolled Optimization Algorithms Meet Neural Networks. arXiv preprint arXiv:1907.11711; 2019.
29.Akcakaya M, Moeller S, Weingartner S, Ugurbil K. Scan-specific robust artificial-neuralnetworks for k-space interpolation (RAKI) reconstruction: Database-free deep learning for fast imaging. Magn Reson Med 2019;81(1):439-453.
30.Hammernik et al., Learning a variational network for reconstruction of accelerated MRI data, Magnetic Resonance in Medicine, 79(6), pp. 3055-3071, 2018.
31.Aggarwal HK, Mani MP, Jacob M. MoDL: Model-Based Deep Learning Architecture for Inverse Problems. IEEE Trans Med Imaging 2019;38(2):394-405.
32.Yang Y, Sun J, Li H, Xu Z. Deep ADMM-Net for compressive sensing MRI. Advances in neural information processing systems; 2016. p 10-18.
33.Mardani M, Sun Q, Donoho D, Papyan V, Monajemi H, Vasanawala S, Pauly J. Neural proximal gradient descent for compressive imaging. Advances in Neural Information Processing Systems; 2018. p 9573-9583.
34.Qin C, Schlemper J, Caballero J, Price AN, Hajnal JV, Rueckert D. Convolutional Recurrent Neural Networks for Dynamic MR Image Reconstruction. IEEE Trans Med Imaging 2019;38(1):280-290.
35.Gregor K, LeCun Y. Learning fast approximations of sparse coding. International Conference on International Conference on Machine Learning; 2010. p 399-406.
36.Yaman B , Hosseini S , Moeller S , et al. Self-Supervised Learning of Physics-Based Reconstruction Neural Networks without Fully-Sampled Reference Data[J]. Magnetic Resonance in Medicine.