离线
|
脑膜瘤起源于蛛网膜帽状细胞,是颅内最常见的非神经上皮来源肿瘤,2016年WHO中枢神经系统肿瘤分类中将其分为Ⅰ、Ⅱ、Ⅲ级共15个亚型[1]。2019年美国中央脑肿瘤登记处的统计报告显示,脑膜瘤约占所有颅内肿瘤的37.6%,其中WHO Ⅰ级脑膜瘤约占80.5%,WHO Ⅱ级、Ⅲ级脑膜瘤分别约占17.7%、1.7%[2]。2021年WHO中枢神经系统肿瘤分类(WHO CNS5)更新,脑膜瘤被认为是单一类型,其15个亚型反映了广泛的形态学谱,该版以阿拉伯数字1、2、3级代替了2016版的Ⅰ、Ⅱ、Ⅲ级,同时强调了定义不典型或间变性(即2级和3级)脑膜瘤的标准应适用于任何潜在亚型,一些分子标志物如SMARCE1 (透明细胞型)、BAP1 (横纹肌样和乳头状型)、KLF4/TRAF7 (分泌型)突变等也和脑膜瘤分级分型相关[3],这意味着脑膜瘤2级和3级的比例可能会发生变化。
无症状的1级脑膜瘤常不手术,需要手术的患者术后主要选择随访观察,5年总生存率为85.5%;2级脑膜瘤需要手术切除,并酌情分次放疗,5年总生存率为75.9%;3级脑膜瘤不仅需要手术,还须辅以分次放疗、化疗,5年总生存率为55.4%[4, 5]。由于不同级别脑膜瘤的治疗方式和预后存在上述差异,而病理学分级分型基于有创性的切除或活检,无创的MRI扩散成像如扩散加权成像、体素内不相干运动加权成像、扩散张量成像和扩散峰度成像可以用于脑膜瘤分级和分型,结合了MRI扩散成像的影像组学方法也展现出良好的效能,这对患者和临床医生选择处理方式和评估预后是有利的。本文基于以往国内外相关研究,将对脑膜瘤分级分型MRI扩散成像研究进展进行综述。
1 扩散加权成像(diffusion weighted imaging,DWI)
DWI技术是检测活体组织内水分子扩散运动的无创方法,可分析不同等级和亚型的脑膜瘤内水分子扩散运动及其受限程度,通常以表观扩散系数(apparent diffusion coefficient,ADC)作为定量分析的指标。
在DWI上低级别(WHO 1级)脑膜瘤通常表现为低、等或稍高信号,而高级别(WHO 2、3级)脑膜瘤常呈高信号,高级别脑膜瘤的ADC值比低级别脑膜瘤的更低[6]。Abdel等[7]将ADC平均值0.79×10-3 mm2/s作为区分低级别和高级别脑膜瘤的阈值,敏感度为81.2%,特异度为91.7%,准确度为89.3%。Atalay等[8]将ADC最小值0.634×10-3 mm2/s作为阈值,敏感度为86%,特异度为57%。汪红梅等[9]以rADC值诊断低级别组、高级别组脑膜瘤的最佳阈值为1.035×10-3 mm2/s,其敏感度为88.5%,特异度为87.5%。Bozdağ等[10]将rADCmean阈值确定为1.09×10-3 mm2/s,AUC为0.750,敏感度为66.67%,特异度为86.36%。Haghighi等[11]应用多参数线性回归分析显示ADC直方图参数模型用于区分Ⅰ级和Ⅱ级脑膜瘤的AUC为0.852,敏感度为79.6%,特异度为84.3%;用于区分Ⅱ级和Ⅲ级脑膜瘤的AUC为0.833,敏感度为70.9%,特异度为80.8%。虽然以上研究认为用ADC值区分脑膜瘤等级是有价值的,但是不同研究选取的ADC参数、阈值以及获得的准确度、敏感度和特异度各不相同。另外,不是所有研究都认为ADC对脑膜瘤分级有效,Lu等[12]认为Ⅰ、Ⅱ级脑膜瘤间ADC值无显著差异,於帆等[13]认为ADC、标准化ADC值在低、高级别脑膜瘤间均无显著差异,但在Ⅰ级脑膜瘤不同亚型间存在差异,其中血管瘤样脑膜瘤的ADC值最高,分泌型脑膜瘤次之,过渡型、脑膜上皮型及纤维型脑膜瘤ADC值则较低。秦响等[14]认为将ADC值联合增强扫描有助于在术前诊断血管瘤型脑膜瘤。脊索样型脑膜瘤被分为WHO 2级,其ADC值却较1级和其他2级脑膜瘤高,Baal等[15]认为这与脊索样型脑膜瘤细胞外的透明质酸和黏液基质有关,将ADC≥1.33×10-3 mm2/s和标准化ADC≥1.63作为截止值时,识别脊索样型脑膜瘤的总体准确度、敏感度和特异度分别达到了96.8%、96.3%和100.0%。微囊型脑膜瘤的囊变部分在DWI上呈网状,T1增强和DWI上的网状表现以及较低的ADC值可作为微囊型脑膜瘤的诊断标志[16]。但实际工作中,微囊型脑膜瘤与非典型脑膜瘤在常规MRI上并不容易鉴别,Ke等[17]研究认为ADCmean,ADCmin在前者中显著高于后者,以ADCmean阈值为0.91×10-3 mm2/s时,AUC为0.967,敏感度为86.67%,特异度为100.00%,准确度为88.89%,这说明DWI有助于区分这两类脑膜瘤。另外,WHO 2级的非典型脑膜瘤和WHO 3级的间变型脑膜瘤鉴别起来也相对困难,而在韩涛等[18]的研究中DWI定量参数(ADCmean、ADCmin和rADC)对于二者的鉴别都有较好的价值,其中ADCmean阈值取 0.822×10-3 mm2/s时,鉴别二者的敏感度为84.1%,特异度为87.5%。由此可见,大多数研究认为DWI对脑膜瘤分级具有价值,但还没有统一、高效的ADC参数及阈值;不同亚型的脑膜瘤间ADC值也存在差异,DWI对于一些具有特点的脑膜瘤亚型有一定的鉴别价值。
2 体素内不相干运动(intravoxel incoherent motion, IVIM)加权成像
1988年Le Bihan等[19]提出了IVIM成像,这是一种获得扩散和灌注的独立图像的方法,运用多组b值、双指数拟合算法得出区分单纯水分子扩散运动和血流灌注的量化参数,如慢扩散系数D、快扩散系数D*和灌注分数f。
Lin等[20]发现从双指数模型DWI中获得的D有助于区分高级别和低级别脑膜瘤,阈值为0.522时,AUC为0.880,敏感度为71.79%,特异度为93.33%。Sacco等[21]认为高级别脑膜瘤的平均ADC、D、D*和f较低级别脑膜瘤更低。Zampini等[22]认为低级别和高级别脑膜瘤的差异存在于所有IVIM参数,其中f的第75百分位值AUC最高(0.96),而包括f和D的两个参数的逻辑回归模型AUC提升至0.972,包括f、D和D∗三个参数的模型AUC提升至1。但Bohara等[23]评价IVIM直方图分析在鉴别低级别脑膜瘤和高级别脑膜瘤中的作用,发现二者之间ADC和D的平均值和百分位数没有显著差异,而D值的标准差(SD)和f值的变异系数(CV)区分二者的AUC值分别为0.752和0.737。Lu等[12]确定用D值区分低级别和高级别脑膜瘤的阈值为0.479,敏感度为90.9%,特异度为76.7%;同时他们发现非典型脑膜瘤的标准化D值明显低于其他亚型,而分泌型和血管瘤样脑膜瘤的标准化D值、f值和标准化f值高于其他亚型。IVIM参数对脑膜瘤分级具有一定诊断价值,尤其是D值,它代表着纯粹的水分子扩散运动,排除了肿瘤内血流灌注对传统ADC的干扰。不过,IVIM参数在脑膜瘤分型中的诊断效能需要进一步探索。
3 扩散张量成像(diffusion tensor imaging,DTI)和扩散峰度成像(diffusion kurtosis imaging,DKI)
DTI是利用DWI技术改进和发展起来的磁共振弥散成像新技术,以三维立体角度定量分析组织内水分子在不同方向上弥散的差异,定量的参数有ADC、各向异性分数(fractional anisotropy,FA)、径向扩散张量(radial diffusivity,D⊥)、轴向扩散张量(axial diffusivity,D//)、平均扩散系数(mean diffusivity,MD)等。DKI是DTI技术的进一步发展,基于水分子扩散的非高斯分布模型,相较DWI和DTI而言更加符合人体内水分子的实际扩散方式,不仅可获得常规DTI参数,还可获得径向峰度(radial kurtosis,K⊥)、轴向峰度(axial kurtosis,K//)、平均峰度(mean kurtosis,MK)等扩散峰度参数。
Zikou等[24]认为高级别脑膜瘤的标准化FA值较低级别脑膜瘤更低,以阈值为0.32区分二者,敏感度为89.0%,特异度为62.5%。然而Aslan等[25]研究认为高级别脑膜瘤和低级别脑膜瘤相比,DTI参数FA和相对FA显著更高,D⊥和D//则显著更低,其中D⊥鉴别二者的AUC最大(0.778),而结合ADCmin、FA和D⊥的诊断AUC、敏感度和特异度分别高达0.96,92.3%和100.0%。在Lin等[26]的研究中DTI参数FA在高级别和低级别脑膜瘤间却无显著差异,MD在高级别脑膜瘤中更低,DKI参数K⊥、K//和MK则在高级别脑膜瘤中更高,其中MK较MD有明显更好的诊断效能(MK最佳诊断阈值为0.99,敏感度为95.24%,特异度为66.67%)。Xing等[27]也认为在低级别和高级别脑膜瘤间DTI参数FA无显著差异,D//、标准化D//、标准化MD则有显著差异,相比之下DKI参数MK对区分二者有更高的诊断能力(阈值为0.875,AUC为0.780,敏感度为70%,特异度为89%);同时他们发现DTI参数(FA、D⊥、标准化FA、标准化D⊥、标准化MD)和DKI参数(K⊥、K//和标准K//)在纤维型、砂粒体型、脑膜上皮细胞型与过渡型(均为WHO 1级)间有一定的鉴别意义。Chen等[28]利用直方图分析认为用MK的第90百分位值鉴别低级别和高级别脑膜瘤AUC最大(0.870),阈值为1.01,敏感度为66.9%,特异度为88.9%;另外MD、FA和MK的直方图参数在纤维型、过渡型和非典型脑膜瘤间具有鉴别价值。从目前的研究结果来看,DTI参数对脑膜瘤分级分型的价值尚不明确;DKI的参数MK是脑膜瘤分级有价值的影像标志物,但DKI扫描时间长,一定程度上限制了其在脑膜瘤分级分型中的应用。
4 基于MRI扩散成像的影像组学
影像组学是一种大数据分析方法,由荷兰学者Lambin[29]于2012年首次提出该概念。目前影像组学通常经历图像分割、特征提取、特征筛选和模型建立4个主要步骤,主要用于肿瘤的病理分级分型、鉴别诊断、疗效评估及预后预测。
在脑膜瘤分级的应用中,已有学者结合MRI扩散成像和其他MRI技术,应用影像组学的方法进行了研究;而在脑膜瘤分型方面,相关研究还有待开展。虞芯仪等[30]的研究中评价了ADC图的直方图和纹理参数对低级别与高级别脑膜瘤的鉴别效能,ADC图纹理参数中熵值的AUC为0.768,高于T2WI纹理参数熵值的AUC (0.705)。Laukamp等[31]基于不同机构和扫描机器的脑膜瘤MRI图像,选取ADC图像的纹理特征,结合肿瘤形状特征、FLAIR和T1增强图像的纹理特征组合的逻辑回归模型用于区分Ⅰ级和Ⅱ级脑膜瘤的AUC为0.91,敏感度为79%,特异度为89%。Hu等[32]提取常规MRI (cMRI)、ADC图和SWI的影像组学特征,使用随机森林(Random Forest,RF)分类器建立的cMRI+ADC+SWI模型获得的AUC为0.84。Park等[33]综合分析T1增强、ADC图和FA图的纹理和形态特征,结合RF和支持向量机(support vector machine,SVM)分类算法构建的脑膜瘤分级模型中最佳AUC为0.86,准确度为89.7%,敏感度为75.0%,特异度为93.5%。Hamerla等[34]基于5个中心的138例脑膜瘤患者比较RF、SVM、极端梯度增强(XGBoost)和多层感知器(Multilayer Perceptron,MLP)建立的分级模型,结果XGBoost结合ADC、T1、T1增强(T1c)、减影图(T1c-T1)、FLAIR和瘤周水肿的ADC影像组学特征,获得最佳结果(AUC为0.97,敏感度为100%,特异度为97%)。事实上,基于大数据的影像组学方法可以较好地避免偶然性和片面性,使这些研究获得的结果更加可靠。
5 局限性与前景展望
MRI扩散成像技术在脑膜瘤的分级分型中已经表现出较好的效能,但研究的方向主要集中在DWI,而IVIM、DTI、DKI的相关研究相对较少,尤其是在脑膜瘤分型方面;在MRI扩散成像参数和阈值的选择以及相应的诊断效能方面,学术界尚不统一,其中DTI参数应用于脑膜瘤分级分型的具体价值尚未得到完全阐明;另外,一些研究中勾画小面积的感兴趣区获得的参数也难以准确、全面地反映肿瘤内部的总体情况,这可能会导致结果的不准确。结合了MRI扩散成像的影像组学方法在脑膜瘤分级分型的研究中诊断效能更加优越,但目前影像组学步骤相对复杂,在临床上的应用还比较困难。
目前还没有将超高b值DWI成像、拉伸指数模型扩散加权成像应用于脑膜瘤分级分型,未来可以开展相关研究;本文综述的相关研究均基于2016版中枢神经系统肿瘤分类,2021年WHO CNS5更新,脑膜瘤分级分型与一些分子标记物相关,MRI扩散成像与这些分子标记物的相关性值得进一步探索;影像组学方法前景广阔,通过更多大样本、多中心的影像组学研究,MRI扩散成像将会在脑膜瘤分级分型中起到更大作用,进而为患者和临床医生选择处理方式和评估预后提供可靠依据。
利益冲突 全部作者均声明无利益冲突。
该项目受到国家自然科学基金(81701681,82071893)山西省留学人员科技活动择优资助项目(20200003)山西医科大学第一医院青年创新基金(YC1426)的资助。
【罗建,汪银华,谭艳.脑膜瘤分级分型MRI扩散成像研究进展[J].磁共振成像,2022, 13(1):140-142,150.DOI:10.12015/issn.1674-8034.2022.01.032.】
http://www.chinesemri.com/CN1159********/1348174.htm
(作者:罗建, 汪银华, 谭艳)
谭艳,山西医科大学第一医院磁共振影像科书记/副主任,山西医科大学医学影像学院科研科主任,教授,医学博士,博士后,博士生导师,博士后指导教师。
教育背景:
2007年-2012年 中南大学湘雅医学院 影像医学与核医学 硕博连读;
2014年-2016年 山西医科大学 影像医学与核医学博士后;
2018年-2019年 美国Moffitt癌症中心研究所,访问学者。
专业特长:腹部、头颈影像诊断,尤其擅长中枢神经系统MRI诊断及功能成像与影像组学研究。
研究方向:神经功能磁共振成像及影像组学研究。
社会兼职:担任中华医学会放射学分会腹部学组委员,中华医学会放射学分会青年学组委员,中国医师协会放射学分会泌尿生殖学组委员,中华医学会放射学分会大数据AI工作委员会委员,山西省医学会放射学专业委员会委员。
获得成果、奖励或荣誉称号:主持国家自然科学基金项目2项,省级课题3项。参编著作3部,以通讯作者或第一作者发表专业论文近40篇,其中SCI收录20余篇,中华级论文1篇。2019山西省“三晋英才”拔尖骨干人才,2016年度“学术技术带头人”。
1. 磁共振影像组学鉴别Ⅱ级孤立性纤维瘤/血管外皮细胞瘤与血管瘤型脑膜瘤的价值
付圣莉 任延德 李向荣 马驰 张华 葛亚琼
【磁共振成像 2022年01期】
http://www.chinesemri.com/CN1159********/1348146.htm
目的 探讨基于多参数MRI影像组学特征鉴别颅内Ⅱ级孤立性纤维瘤/血管外皮细胞瘤(solitary fibrous tumor/hemangiopericytoma,SFT/HPC)与血管瘤型脑膜瘤(angiomatous meningioma,AM)的价值。材料与方法 回顾性...
出版日期: 2022年01月
2. 颅咽管瘤与脑组织粘连/侵袭的影像学研究进展
张玲玲 陈绪珠
【磁共振成像 2021年12期】
http://www.chinesemri.com/CN1159********/1345305.htm
颅咽管瘤周围有下丘脑等重要脑组织。虽然是WHO Ⅰ级肿瘤,颅咽管瘤对周围脑组织的影响却很复杂,常粘连、侵袭邻近脑组织,从而对肿瘤的治疗和患者预后造成重要影响。如何在影像学上明确颅咽管瘤对周围脑组织影响...
出版日期: 2021年12月
3. MRI预测高级别胶质瘤术后复发模式的研究进展
刘毛毛 贺业新
【磁共振成像 2021年12期】
http://www.chinesemri.com/CN1159********/1345298.htm
脑胶质瘤是中枢神经系统最常见的恶性肿瘤。高级别脑胶质瘤(high-grade glioma,HGG)由于复杂的生物学行为易造成患者手术后复发率较高且预后较差。手术后复发的HGG往往恶性程度更高、侵袭性更强。不同复发模式的...
出版日期: 2021年12月
4. 眼眶和颅脑磁共振成像促进视网膜母细胞瘤精准诊疗——视网膜母细胞瘤影像检查与诊断专家共识解读
李婷 鲜军舫
【磁共振成像 2021年11期】
https://www.chinesemri.com/CN1159********/1342405.htm
磁共振成像(magnetic resonance imaging,MRI)是评估视网膜母细胞瘤(retinoblastoma,RB)眼球外或视神经侵犯的最佳无创性方法,在诊断及分期中有重要作用,为临床决定是否摘除眼球提供重要参考依据。作者针对...
出版日期: 2021年11月
5. MR扩散加权成像在软组织肿瘤中的应用进展
阳艳语 张凯 张丽娜 王绍武
【磁共振成像 2021年10期】
http://www.chinesemri.com/CN1159********/1339188.htm
磁共振扩散加权成像是反映水分子扩散特性、检测组织微观结构变化的功能成像技术,包括单指数扩散加权成像(diffusion weighted imaging,DWI)、体素内不相干运动(intravoxel incoherent motion,IVIM)模型、扩散...
出版日期: 2021年10月
6. 钆塞酸二钠在结直肠癌肝转移瘤诊断及评估中的应用进展
黄小兰 彭婕
【磁共振成像 2021年10期】
http://www.chinesemri.com/CN1159********/1339185.htm
钆塞酸二钠(gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid,Gd-EOB-DTPA)是肝脏局灶性病变的重要影像诊断工具,其对于早期结直肠癌肝转移瘤(colorectal liver metastasis,CRLM)的诊断及化疗后CR...
出版日期: 2021年10月
7. 多模态磁共振成像技术在脑胶质瘤基因分型及预后评估中的研究进展
赵焕 白岩 王梅云
【磁共振成像 2021年09期】
http://www.chinesemri.com/CN1159********/1336511.htm
脑胶质瘤是成人最常见的颅内原发性肿瘤,易复发、预后较差,危害巨大。脑胶质瘤的基因分型对于治疗方案的选择和预后预测具有重要意义。磁共振成像作为脑胶质瘤诊断与评估的首选方法,在反映基因分型以及预后评估...
出版日期: 2021年09月
8. 多模态磁共振成像技术在脑胶质瘤基因分型及预后评估中的研究进展
赵焕 白岩 王梅云
【磁共振成像 2021年09期】
http://www.chinesemri.com/CN1159********/1336511.htm
脑胶质瘤是成人最常见的颅内原发性肿瘤,易复发、预后较差,危害巨大。脑胶质瘤的基因分型对于治疗方案的选择和预后预测具有重要意义。磁共振成像作为脑胶质瘤诊断与评估的首选方法,在反映基因分型以及预后评估...
出版日期: 2021年09月
9. 酰胺质子转移MRI在鼻咽肿瘤诊断中的初步应用
杨倩 邹丽艳 刘周 李丽 肖嘉辉 王鸣宇 王思远 罗德红
【磁共振成像 2021年09期】
http://www.chinesemri.com/CN1159********/1336488.htm
目的 探讨酰胺质子转移(amide proton transfer,APT)成像在鼻咽部组织中的应用价值。材料与方法 回顾性研究2020年6月至2021年2月经病理证实的50例鼻咽癌患者的磁共振APT图像以及临床、病理资料。由2名放射医师...
出版日期: 2021年09月
10. 人工智能在脑胶质瘤MRI诊断中的研究进展
赵维维 孙静 诸静其
【磁共振成像 2021年08期】
https://www.chinesemri.com/CN1159********/1332139.htm
脑胶质瘤是最常见的颅内原发性肿瘤,多呈浸润性生长,手术难以彻底切除,远处转移和对放化疗不敏感者治愈率极低,复发率高。患者长期生存率仅为20%。核磁共振是脑胶质瘤的首选检查方法,基于MRI的多模态影像学技...
出版日期: 2021年08月
来源:https://www.163.com/dy/article/GVRR0DK205522DOO.html
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作! |
|