医工互联

 找回密码
 注册[Register]

手机动态码快速登录

手机号快速登录

微信登录

微信扫一扫,快速登录

QQ登录

只需一步,快速开始

查看: 126|回复: 0
收起左侧

膜法水处理工艺全介绍

[复制链接]

  离线 

发表于 2023-2-26 13:29:08 | 显示全部楼层 |阅读模式 <
目前膜技术作为一个古老但是新兴的技术,技术开发越来越深入,应用范围越来越广泛,本文总结目前世界上现有的膜处理技术,详细介绍各种膜技术的原理及应用领域!
微滤(MF)膜技术
微滤(MF)的基本原理

微滤膜能截留0.1-1微米之间的颗粒。微滤膜允许大分子和溶解性固体(无机盐)等通过,但会截留悬浮物,细菌,及大分子量胶体等物质。微滤膜的运行压力一般为:0.3-7bar。微滤膜过滤是世界上开发应用最早的膜技术,以天然或人工合成的高分子化合物作为膜材料。对微滤膜而言,其分离机理主要是筛分截留。
微滤膜的应用
1)水处理行业:水中悬浮物,微小粒子和细菌的去除;
2)电子工业:半导体工业超纯水、集成电路清洗用水终端处理;
3)制药行业:医用纯水除菌、除热原,药物除菌;
4)医疗行业:除去组织液、抗菌素、血清、血浆蛋白质等多种溶液中的菌体;
5)食品工业:饮料、酒类、酱油、醋等食品中的悬浊物、微生物和异味杂质、酵母和霉菌的去除,果汁的澄清过滤。
6)化学工业:各种化学品的过滤澄清。

超滤(UF)膜技术
超滤(UF)原理
超滤(Ultra-filtration, UF)是一种能将溶液进行净化和分离的膜分离技术。超滤膜系统是以超滤膜丝为过滤介质,膜两侧的压力差为驱动力的溶液分离装置。超滤膜只允许溶液中的溶剂(如水分子)、无机盐及小分子有机物透过,而将溶液中的悬浮物、胶体、蛋白质和微生物等大分子物质截留,从而达到净化和分离的目的。
超滤过滤孔径和截留分子量的范围一直以来定义较为模糊,一般认为超滤膜的过滤孔径为0.001-0.1微米,截留分子量(Molecular weigh cut-off, MWCO)为1,000-1,000,000 Dalton。严格意义上来说超滤膜的过滤孔径为0.001-0.01微米,截留分子量为1,000-300,000 Dalton。若过滤孔径大于0.01微米,或截留分子量大于300,000 Dalton的微孔膜就应该定义为微滤膜或精滤膜。
超滤膜的应用
超滤膜的应用范围极其广泛,基本上涉及过滤的行业都可以用到过滤设备,基本过滤的行业如下:
纯水与超纯水制备工艺中作为反渗透预处理以及超纯水的终端处理;工业用水中用于分离细菌、热源、胶体、悬浮杂质及大分子有机物;饮用水、矿泉水净化;发酵、酶制剂工业、制药工业的浓缩、纯化与澄清;果汁浓缩、分离;大豆、乳品、制糖工业、酒类、茶汁、醋等的分离、浓缩与澄清;工业废水与生活污水的净化和回收;电泳漆的回收。
超滤膜分离可取代传统工艺中的自然沉降,板框过滤,真空转鼓,离心分离,溶媒萃取,树脂提纯,活性炭脱色等工艺过程。该过程为常温操作,无相态变化,不产生二次污染。
纳滤(NF)膜技术
纳滤(NF)原理
纳滤(NF)是一种新型分子级膜分离技术,是目前世界膜分离领域研究的热点之一。NF膜孔径在1nm以上,一般在1-2nm;对溶质的截留性能介于RO与UF膜之间;RO膜几乎对所有的溶质都有很高的脱除率,但NF膜只对特定的溶质具有高脱除率。NF膜能够去除二价、三价离子,Mn≥200的有机物,以及微生物、胶体、热源、病毒等。纳滤膜的一个很大特征是膜本体带有电荷,这是它在很低压力下(仅0.5MPa)仍具有较高脱盐性能和截留分子量为数百的膜也可脱除无机盐的重要原因,也是NF运行成本较低的主要原因。NF适合各种含盐水源,水利用率一般为75%~85%,海水淡化时在30%~50%,没有酸碱废水排放。
纳滤膜在水处理中的应用
纳滤膜在饮用水中的应用
纳滤操作压力小,是饮用水制备和深度净化的首选工艺。
目前,大多数城市的给水水源均受到不同程度的污染,而自来水厂的常规处理工艺对水中有机物去除率不高,当采用氯杀菌消毒时,氯又会与水中的有机物会生成卤代副产物。Peltier等4年的跟踪研究表明:采用纳滤系统后水中的DOC降低到平均0.7mgC/L,出水余氯的含量由0.35mg/L降到0.1mg/L,最终网线中三卤甲烷(THMs)的形成比未采用纳滤系统时减少了50%。
另外,由于生物降解型溶解有机碳(BCOD)的减少,改进了产水的生物稳定性。
纳滤技术能够去除绝大部分的Ca、Mg等离子,因此脱盐是纳滤技术应用最多的领域。膜法水处理技术在投资、操作和维修及价格等方面与常规的石灰软化和离子交换过程相近,但具有无污泥、不需再生、完全除去悬浮物和有机物、操作简便和占地省等优点,应用实例较多。纳滤可以直接用于地下水、地表水和废水的软化,还可以作为反渗透、太阳能光伏脱盐装置等的预处理。
纳滤膜在海水淡化中的应用
海水淡化是指将含盐量为35000mg/L的海水淡化至500mg/L以下的饮用水。
纳滤膜在废水处理中的应用
生活污水
生活污水一般用生物降解/化学氧化法结合处理,但氧化剂的用量太大,残留物多。薛罡等采用微絮凝纤维球过滤.超滤.纳滤组合工艺对宾馆洗浴废水进行了小试试验。超滤出水水质可达到回用至宾馆厕所冲洗、绿化等环节的用水要求,纳滤出水水质可达到生活饮用水卫生标准(GB5749.85),可以回用至宾馆洗衣、洗浴等用水要求更高的环节。
纺织、印染废水
纺织废水中含有的染料很难用生物的方法去除,Hassani研究了酸性、活性、直接和分散染料水溶液的浓度、压力、总溶解性固体和无机盐含量等对纳滤膜截留性能的影响。
制革废水
制革废水含有高浓度的有机物、硫酸盐和氯化物,酸洗工序的废液电导值达到75mS/cm。Bes-Pia采用NF技术回收了制革废水,所得到的高浓度硫酸盐浓水回到酸洗段,而氯化物的产水打回裂化反应鼓。
电镀废水
电镀工厂往往产生大量废液,尽管采取酸化、化学无害化、沉降和分离污泥等复杂处理步骤,产水含盐量高,不能重新回用。
造纸废水
在纸浆和造纸业中,匀浆、漂白和造纸等工序都需要大量的水。实现水系统的(半)密闭循环是纸浆厂、造纸厂节约水资源降低排放量的最佳途径。传统活性污泥法的产水中还含有部分有色化合物、微生物、抗体和少量的生物分解物,悬浮固体等,仅能被用于制造包装纸,不能用于更高级别纸的生产。另外,该法不能减少无机盐的含量。Koyuncu对比了水→纳滤以及造纸废水→活性污泥→纳滤两种处理工艺的实用性,实验表明:两种方法的出水质量相似,第二种方法的产水通量更好,出水可以用于高级别纸。但纳滤产水仍然含有一定量的一价盐,需要再增加低压反渗透装置脱除盐类才能保证循环水的质量。
反渗透(RO)膜技术
反渗透(RO)的原理
反渗透是一种以压力为推动力的膜分离过程在使用中为产生反渗透压需用水泵给含盐水溶液或废水施加压力以克服自然渗透压及膜的阻力使水透过反渗透膜,将水中溶解盐或污染杂质阻止在反渗透膜的另一侧。
反渗透膜在水处理中的应用
在水处理方面的常规应用
水是人们赖以生存和进行生产活动必不可少的物质条件。由于淡水资源日益缺乏,世界上反渗透水处理装置的能力已达到每天数百万吨。
在城市污水方面的应用
目前,反渗透膜在城市污水深度处理方面的应用尤其是污水处理厂二级出水回用及中水回用等,已受到高度重视。
在重金属废水处理方面的应用
含重金属离子废水的常规处理方法都只是一种污染转移,即将废水中溶解的重金属转化成沉淀或更加易于处理的形式,其最终处置常常是进行填埋,而重金属对地下水和地表水环境造成二次污染的危害依然长期存在。
在含油废水方面的应用
含油废水是一种量大面广的工业废水,若直接排入水体,会在水体表层产生油膜阻碍氧气溶入水中从而致使水中缺氧、生物死亡、发出恶臭,严重污染生态环境。油3.5mg/L、总有机碳(TOC)(16~23)mg/L的油田采出水处理到锅炉用水水质于是处理后的水回用于电站锅炉给水。
渗析膜技术
各种渗析膜技术原理
渗析
渗析(Dialysis,简称D)是溶质在自身的浓度梯度作用下,从膜的上游传向膜的下游的过程。
渗析是最早被发现并研究的膜分离技术,但因为受到本身体系的限制,渗析过程进行缓慢,效率低下,渗析过程的选择性不高,因此渗析过程主要用于脱除含有多种溶质溶液中的低分子量组分,如血液渗析,即以渗析膜代替肾来去除尿素、肌酸酐、磷酸盐和尿酸等有毒的低分子量组分,以缓解肾衰竭和尿毒症患者的病情。
电渗析
电渗析(Electrodialysis,简称ED)是在直流电场的作用下,以电位差为推动力,利用离子交换膜对溶液中的阴阳离子的选择性,把电解质从溶液中分离出来,从而实现溶液的浓缩、淡化、精制和提纯。
倒极电渗析(EDR)
倒极电渗析就是根据ED原理,每隔一定时间(一般为15~20min),正负电极极性相互倒换,能自动清洗离子交换膜和电极表面形成的污垢,以确保离子交换膜工作效率的长期稳定及淡水的水质水量。在20世纪80年代后期,倒极电渗析器的使用,大大提高了电渗析操作电流和水回收率,延长了运行周期。EDR在废水处理方面尤其有独到之处,其浓水循环、水回收率最高可达95%。
液膜电渗析(EDLM)
液膜电渗析是用具有相同功能的液态膜代替固态离子交换膜,其实验模型就是用半透玻璃纸将液膜溶液包制成薄层状的隔板,然后装入电渗析器中运行。利用萃取剂作液膜电渗析的液态膜,可能为浓缩和提取贵金属、重金属、稀有金属等找到高效的分离方法,因为寻找对某种形式离子具有特殊选择性的膜与提高电渗析的提取效率有关。提高电渗析的分离效率,直接与液膜结合起来是很有发展前途的。例如,固体离子交换膜对铂族金属(锇、钌等)的盐溶液进行电渗析时,会在膜上形成金属二氧化物沉淀,这将引起膜的过早损耗,并破坏整个工艺过程,应用液膜则无此弊端。
填充床电渗析(EDI)
填充床电渗析(EDI)是将电渗析与离子交换法结合起来的一种新型水处理方法,它的最大特点是利用水解离产生的H+和OH-自动再生填充在电渗析器淡水室中的混床离子交换树脂,从而实现了持续深度脱盐。它集中了电渗析和离子交换法的优点,提高了极限电流密度和电流效率。1983年Ke2dem.o.及其同事们提出了填充混合离子交换树脂电渗析过程除去离子的思想,1987年,Mlillpore公司推出了这一产品。填充床电渗析技术具有高度先进性和实用性,在电子、医药、能源等领域具有广阔的应用前景,可望成为纯水制造的主流技术。
双极性膜电渗析(EDMB)
双极膜是一种新型离子交换复合膜,它一般由层压在一起的阳离子交换膜组成,通过膜的水分子即刻分解成H+和OH-,可作为H+和OH-的供应源。双极性膜电渗析突出的优点是过程简单,能效高,废物排放少。目前双极性膜电渗析工艺的主要应用领域在酸碱制备。例如,用双极性膜和阳膜配成的二室膜可以实现有机酸盐(葡萄糖酸钠、古龙酸钠等)的转化,同时得到碱(NaOH),但浓度(酸最大浓度2mol•L-1,碱最大浓度6mol•L-1)和纯度两方面都受到限制。现在开发的应用领域还有废气脱硫、离子交换树脂再生、钾钠的无机过程等。
无极水电渗析
无极水电渗析是传统电渗析的一种改进形式,它的主要特点是除去了传统电渗析的极室和极水。例如在装置的电极紧贴一层或多层离子交换膜,它们在电气上都是相互联接的,这样既可以防止金属离子进入离子交换膜,同时又防止极板结垢,延长电极的使用寿命。由于取消了极室,无极水排放,大大提高了原水的利用率。无极水电渗析于1991年问世,在应用过程中技术不断改善,现装置在运行方式上多采用频繁倒极的形式。目前,无极水全自动控制电渗析器已在国内20个省、市使用,近来,还远销东南亚。
渗析膜的应用工业废水处理
电渗析可用于电镀废水、重金属废水等的处理,提取废水中的金属离子等,既能回收利用水和有用资源,又减少了污染排放。万诗贵等自制离子膜电解槽研究了铜生产过程中钝化液处理的可行性,结果发现,不仅可以回收其中的铜和锌,而且将Cr3+氧化成Cr6+,再生了钝化液。电渗析法与离子交换法结合从酸洗废液中回收重金属和酸的工艺已在工业上应用。
电渗析还可以用于碱性废水及有机废水的处理。污染控制与资源化研究国家重点实验室对采用离子膜电解法对处理环氧丙烷氯醇化尾气碱洗废水进行了研究。在电解电压5.0V时,循环处理3h,废水COD去除率可达78%,废水中碱回收率可达73.55%,为后续生化单元起到良好的预处理作用。齐鲁石油化工公司利用电渗析法处理高浓度复合有机酸废水,浓度为3%~15%,无废渣及二次污染,得到的浓溶液含酸20%~40%,可以回收处理,废水中含酸量可降至0.05%~0.3%。川化股份有限公司采用特殊电渗析装置处理冷凝废水,最大处理量为36t/h,浓水中硝酸铵体积百分比含量为20%,回收率达96%以上,合格淡水排放水中氨氮质量分数含量≤40mg/L。
饮用水及过程水处理
我国在西南地区采用电渗析法将盐泉卤水制盐,使NaCl的含量稳定提高到120g/L,与原来采用的单纯熬盐法相比,产量增加而成本降低。山东铝矿业公司生活饮用水采用浓水频繁倒极电渗析处理,处理后的水质为:总硬度H0=174.75mg/L;溶解性总固体为255.0mg/L;总铁量<0.3mg/L。山西某发电厂亚临界锅炉补给水系统采用了EDI技术锅炉补给水电导率<0.06,SiO2为3μg/L。
食品工业
在白酒生产中把握质量最关键的一环是勾兑,而勾兑用水的质量是很重要的,它不仅影响白酒的内在质量,还影响白酒的外观质量,使用电渗析法处量勾兑用水,可使水质明显改善,达到国家标准。用电渗析法祛除葡萄酒中的酒石酸盐比传统冷冻法更高效,更加节约能源资源,葡萄酒的感官质量得到提高。有研究人员采用国产离子交换膜运用电渗析技术进行酱油脱盐的可行性试验,证明了电渗析对酱油的脱盐是切实可行的分离方法。采用电渗析技术可一步实现维生素C钠盐脱盐目的,转化率高达99%,平均电流效率约70%,其副产品NaOH稀溶液也可被有效利用。
生化行业
采用高性能离子交换膜,应用电渗析脱盐法,分离提纯N-乙酰-L-半胱氨酸,取得了较为满意的效果。根据双极性膜电渗析系统的特点,即双极性膜的阳膜析出H+,阴膜析出OH-,可以把双极性膜电渗析技术应用于大豆蛋白质的分离,其有很多优点:整个生产过程不需要添加酸和碱,资源可以循环利用,耗水少,分离出的蛋白质中盐含量明显减少。
正渗透(FO)技术
正渗透(FO)的原理
用只能透过溶剂而不能透过溶质分子的半透膜将溶剂和溶液隔开,溶剂分子将在渗透压的作用下自发地从溶剂侧透过膜进入溶液侧,这就是渗透现象,也即所谓的“正向渗透”。
正渗透膜在水处理中的应用废水处理
关于FO在废水领域的应用在许多文献中均有报道,主要包括早期高浓度工业废水的浓缩、垃圾渗滤液的处理、生活污水的处理、市政污水处理厂污泥厌氧消解液的浓缩和空间站上直接将污水处理成饮用水的生命支持系统等。虽然这些研究中FO 过程不是终端工艺,但其在预处理阶段具有很高的脱盐性能。
1998 年,Osmotek 公司组装了一套实验室规模的FO系统,对在Corvallis Oregon的Coffin Butte 垃圾填埋厂的垃圾渗滤液进行了浓缩试验。这个垃圾场所在地区年降水量超过1400 mm,其每年产生的渗滤液大约在20000~40000 m3。试验进行了3 个月,使用Osmotek 的三乙酸纤维素膜并以NaCl 溶液作为提取液。实验表明,对未经预处理的渗滤液进行过滤时,此系统对TDS、TSS、TKN、COD 的截留率均在94%~96%,过膜水通量也没有明显衰减;但对浓缩的渗滤液进行过滤时,FO膜的水通量衰减了30%~50%,经过清洗后通量基本完全恢复。在实验室成功运行后,Osmotek 公司设计和组装了一套大型的膜渗透系统,实现了FO系统的工程应用。
近年来随着FO工艺的不断发展,引起了很多学者的关注,将其与传统的膜分离技术相结合,更是近几年的研究热点。J. J. Qin 等将传统的好氧/厌氧(A/O)活性污泥工艺与FO系统相结合,组成渗透膜生物反应器(OMBR)对生活污水进行处理,获得了较高的膜通量。经实验发现,当提取液NaCl 的浓度为0.14 mol/L 时,其膜通量为3.6 L/(m2h);当提取液浓度增大到1.5 mol/L 时,膜通量为17.3 L/(m2h),实验中废水先进入生物反应池进行生化降解,随后进入FO系统进行渗透过滤。
水质深度净化
随着中水回用技术的发展,FO在饮用水净化方面目前应用最成功的应属在空间站中将产生的生活污水直接处理成饮用水。Osmotek 公司研发了一种新型的混合工艺——RO及直接渗透浓缩(DOC),被美国国家航空和宇宙航行局(NASA)用作太空站饮水净化系统。这个DOC 系统是目前用在太空上的唯一一个膜法废水处理系统,经NASA测试,它使处理后水质大大提升,在消耗相对较低的能量(15~50 kWh/m3)下可将水质中的大多数指标恢复至原水的95%以上,这样太空站所需的水供给就极少了。
在这个FO 系统中,太空站污水中主要为人体代谢排泄物,包括尿液、潮湿冷凝物及卫生清洗水等混合液。进水中的卫生用水及潮湿冷凝物(大于总废水的80%)先经过一级FO 进行预处理,被一级FO 浓缩的原料液(不超过总废水的20%)与尿液混合进入二级FO 进行处理,最后这两级收集的渗透液在抽吸泵的作用下一起进入RO 系统,作进一步净化提纯。经RO 处理后的浓缩液经泵提升再次回流至FO系统渗透侧,重新作为渗透提取液。因此在RO 单元产生两种水,一种是高水质饮水,一种是高浓度FO 提取液,在这个系统中,提取液得到了反复使用,大大简化了处理工艺,也避免了资源浪费。
海水淡化
在FO 系统中,与RO 相似,原料液中的水分子通过半透膜渗透到膜的渗透侧,将盐溶液截留在膜的另一侧。因此用FO 作为海水淡化工艺和方法一直是研究人员研究的重点,目前已有不少专利。
在FO单元,采用错流渗透可以减缓悬浮物在膜表面的沉积。为了使原料液与提取液的温度都维持在60℃左右,在原料液和提取液储存箱中安装了控温器,使溶液温度变化幅度控制在±1 ℃,同时通过电子天平来计算纤维膜的过膜水通量。当NH3/CO2提取液被FO产生的淡水稀释后,经过60 ℃左右的中温加热,提取液溶质又分解成NH3、CO2重新回到FO过程循环利用。经试验发现,当提取液原液为0.05mol/L 的NaCl 溶液时,正向渗透压为23.8 MPa;当提取液原液为2 mol/L 的NaCl溶液时,正向渗透压为12.7MPa。

来源:https://www.toutiao.com/article/7102305284546380326
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!
回复

使用道具 举报

提醒:禁止复制他人回复等『恶意灌水』行为,违者重罚!
您需要登录后才可以回帖 登录 | 注册[Register] 手机动态码快速登录 微信登录

本版积分规则

发布主题 快速回复 收藏帖子 返回列表 客服中心 搜索
简体中文 繁體中文 English 한국 사람 日本語 Deutsch русский بالعربية TÜRKÇE português คนไทย french

QQ|RSS订阅|小黑屋|处罚记录|手机版|联系我们|Archiver|医工互联 |粤ICP备2021178090号 |网站地图

GMT+8, 2025-1-22 23:59 , Processed in 0.234990 second(s), 62 queries .

Powered by Discuz!

Copyright © 2001-2023, Discuz! Team.

快速回复 返回顶部 返回列表