医工互联

 找回密码
 注册[Register]

手机动态码快速登录

手机号快速登录

微信登录

微信扫一扫,快速登录

QQ登录

只需一步,快速开始

查看: 161|回复: 0
收起左侧

python在医学领域应用_YOLO v5在医疗领域中消化内镜目标检测的应用

[复制链接]

  离线 

发表于 2022-11-17 03:40:40 | 显示全部楼层 |阅读模式 <
YOLO v5在医疗领域中消化内镜目标检测的应用
YOLO v5训练自己数据集详细教程
Xu Jing
YOLOv4还没有退热,YOLOv5已经发布!
6月9日,Ultralytics公司开源了YOLOv5,离上一次YOLOv4发布不到50天。而且这一次的YOLOv5是完全基于PyTorch实现的!
YOLO v5的主要贡献者是YOLO v4中重点介绍的马赛克数据增强的作者
python在医学领域应用_YOLO v5在医疗领域中消化内镜目标检测的应用8285 作者:Struggle 帖子ID:13604 YOLO v5,内镜目标检测,数据集训练,环境配置
                               
登录/注册后可看大图

本项目描述了如何基于自己的数据集训练YOLO v5
2.png

但是YOLO v4的二作提供给我们的信息和官方提供的还是有一些出入:
python在医学领域应用_YOLO v5在医疗领域中消化内镜目标检测的应用9040 作者:Struggle 帖子ID:13604 YOLO v5,内镜目标检测,数据集训练,环境配置
                               
登录/注册后可看大图

0.环境配置
安装必要的python package和配置相关环境
# python3.6
# torch==1.3.0
# torchvision==0.4.1
# git clone yolo v5 repo
git clone https://github.com/ultralytics/yolov5 # clone repo
# 下载官方的样例数据(这一步可以省略)
python3 -c "from yolov5.utils.google_utils import gdrive_download; gdrive_download('1n_oKgR81BJtqk75b00eAjdv03qVCQn2f','coco128.zip')" # download dataset
cd yolov5
# 安装必要的package
pip3 install -U -r requirements.txt
1.创建数据集的配置文件dataset.yaml
data/coco128.yaml来自于COCO train2017数据集的前128个训练图像,可以基于该yaml修改自己数据集的yaml文件
# train and val datasets (image directory or *.txt file with image paths)
train: ./datasets/score/images/train/
val: ./datasets/score/images/val/
# number of classes
nc: 3
# class names
names: ['QP', 'NY', 'QG']
2.创建标注文件
可以使用LabelImg,Labme,Labelbox, CVAT来标注数据,对于目标检测而言需要标注bounding box即可。然后需要将标注转换为和darknet format相同的标注形式,每一个图像生成一个*.txt的标注文件(如果该图像没有标注目标则不用创建*.txt文件)。创建的*.txt文件遵循如下规则:
每一行存放一个标注类别
每一行的内容包括class x_center y_center width height
Bounding box 的坐标信息是归一化之后的(0-1)
class label转化为index时计数是从0开始的
def convert(size, box):
'''
将标注的xml文件标注转换为darknet形的坐标
'''
dw = 1./(size[0])
dh = 1./(size[1])
x = (box[0] + box[1])/2.0 - 1
y = (box[2] + box[3])/2.0 - 1
w = box[1] - box[0]
h = box[3] - box[2]
x = x*dw
w = w*dw
y = y*dh
h = h*dh
return (x,y,w,h)
每一个标注*.txt文件存放在和图像相似的文件目录下,只需要将/images/*.jpg替换为/lables/*.txt即可(这个在加载数据时代码内部的处理就是这样的,可以自行修改为VOC的数据格式进行加载)
例如:
datasets/score/images/train/000000109622.jpg # image
datasets/score/labels/train/000000109622.txt # label
如果一个标注文件包含5个person类别(person在coco数据集中是排在第一的类别因此index为0):
python在医学领域应用_YOLO v5在医疗领域中消化内镜目标检测的应用4546 作者:Struggle 帖子ID:13604 YOLO v5,内镜目标检测,数据集训练,环境配置
                               
登录/注册后可看大图

3.组织训练集的目录
将训练集train和验证集val的images和labels文件夹按照如下的方式进行存放
python在医学领域应用_YOLO v5在医疗领域中消化内镜目标检测的应用1422 作者:Struggle 帖子ID:13604 YOLO v5,内镜目标检测,数据集训练,环境配置
                               
登录/注册后可看大图

至此数据准备阶段已经完成,过程中我们假设算法工程师的数据清洗和数据集的划分过程已经自行完成。
4.选择模型backbone进行模型配置文件的修改
在项目的./models文件夹下选择一个需要训练的模型,这里我们选择yolov5x.yaml,最大的一个模型进行训练,参考官方README中的table,了解不同模型的大小和推断速度。如果你选定了一个模型,那么需要修改模型对应的yaml文件
# parameters
nc: 3 # number of classes <------------------ UPDATE to match your dataset
depth_multiple: 1.33 # model depth multiple
width_multiple: 1.25 # layer channel multiple
# anchors
anchors:
- [10,13, 16,30, 33,23]# P3/8
- [30,61, 62,45, 59,119]# P4/16
- [116,90, 156,198, 373,326]# P5/32
# yolov5 backbone
backbone:
# [from, number, module, args]
[[-1, 1, Focus, [64, 3]],# 1-P1/2
[-1, 1, Conv, [128, 3, 2]],# 2-P2/4
[-1, 3, Bottleneck, [128]],
[-1, 1, Conv, [256, 3, 2]],# 4-P3/8
[-1, 9, BottleneckCSP, [256]],
[-1, 1, Conv, [512, 3, 2]],# 6-P4/16
[-1, 9, BottleneckCSP, [512]],
[-1, 1, Conv, [1024, 3, 2]],# 8-P5/32
[-1, 1, SPP, [1024, [5, 9, 13]]],
[-1, 6, BottleneckCSP, [1024]],# 10
]
# yolov5 head
head:
[[-1, 3, BottleneckCSP, [1024, False]],# 11
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]],# 12 (P5/32-large)
[-2, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 6], 1, Concat, [1]],# cat backbone P4
[-1, 1, Conv, [512, 1, 1]],
[-1, 3, BottleneckCSP, [512, False]],
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]],# 17 (P4/16-medium)
[-2, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 4], 1, Concat, [1]],# cat backbone P3
[-1, 1, Conv, [256, 1, 1]],
[-1, 3, BottleneckCSP, [256, False]],
[-1, 1, nn.Conv2d, [na * (nc + 5), 1, 1, 0]],# 22 (P3/8-small)
[[], 1, Detect, [nc, anchors]],# Detect(P3, P4, P5)
]
5.Train
# Train yolov5x on score for 300 epochs
$ python3 train.py --img-size 640 --batch-size 16 --epochs 300 --data ./data/score.yaml --cfg ./models/score/yolov5x.yaml --weights weights/yolov5x.pt

6.Visualize
开始训练后,查看train*.jpg图片查看训练数据,标签和数据增强,如果你的图像显示标签或数据增强不正确,你应该查看你的数据集的构建过程是否有问题
python在医学领域应用_YOLO v5在医疗领域中消化内镜目标检测的应用4241 作者:Struggle 帖子ID:13604 YOLO v5,内镜目标检测,数据集训练,环境配置
                               
登录/注册后可看大图

一个训练epoch完成后,查看test_batch0_gt.jpg查看batch 0 ground truth的labels
7.jpeg

查看test_batch0_pred.jpg查看test batch 0的预测
python在医学领域应用_YOLO v5在医疗领域中消化内镜目标检测的应用1720 作者:Struggle 帖子ID:13604 YOLO v5,内镜目标检测,数据集训练,环境配置
                               
登录/注册后可看大图

训练的losses和评价指标被保存在Tensorboard和results.txtlog文件。results.txt在训练结束后会被可视化为results.png
>>> from utils.utils import plot_results
>>> plot_results()
# 如果你是用远程连接请安装配置Xming: https://blog.csdn.net/akuoma/article/details/82182913
python在医学领域应用_YOLO v5在医疗领域中消化内镜目标检测的应用3964 作者:Struggle 帖子ID:13604 YOLO v5,内镜目标检测,数据集训练,环境配置
                               
登录/注册后可看大图

7.推断
$ python3 detect.py --source file.jpg # image
file.mp4 # video
./dir # directory
0 # webcam
rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa # rtsp stream
http://112.50.243.8/PLTV/88888888/224/3221225900/1.m3u8 # http stream
# inference /home/myuser/xujing/EfficientDet-Pytorch/dataset/test/ 文件夹下的图像
$ python3 detect.py --source /home/myuser/xujing/EfficientDet-Pytorch/dataset/test/ --weights weights/best.pt --conf 0.1
$ python3 detect.py --source ./inference/images/ --weights weights/yolov5x.pt --conf 0.5
# inference 视频
$ python3 detect.py --source test.mp4 --weights weights/yolov5x.pt --conf 0.4
python在医学领域应用_YOLO v5在医疗领域中消化内镜目标检测的应用2299 作者:Struggle 帖子ID:13604 YOLO v5,内镜目标检测,数据集训练,环境配置
                               
登录/注册后可看大图

11.jpeg

Reference

来源:https://blog.csdn.net/weixin_39805355/article/details/110060242
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!
回复

使用道具 举报

提醒:禁止复制他人回复等『恶意灌水』行为,违者重罚!
您需要登录后才可以回帖 登录 | 注册[Register] 手机动态码快速登录 微信登录

本版积分规则

发布主题 快速回复 收藏帖子 返回列表 客服中心 搜索
简体中文 繁體中文 English 한국 사람 日本語 Deutsch русский بالعربية TÜRKÇE português คนไทย french

QQ|RSS订阅|小黑屋|处罚记录|手机版|联系我们|Archiver|医工互联 |粤ICP备2021178090号 |网站地图

GMT+8, 2024-11-5 21:51 , Processed in 0.273716 second(s), 67 queries .

Powered by Discuz!

Copyright © 2001-2023, Discuz! Team.

快速回复 返回顶部 返回列表