芷亦止兮 发表于 2023-2-27 04:45:14

首个人工智能病理诊断系统问世,准确率98%

首个临床级病理AI诞生,4万余真实世界病理切片准确率超98%,用于筛查可减少医生75%工作量
近150年病理学的最大突破,首个临床级别的AI系统终于来了!
纪念斯隆·凯特琳癌症研究中心(MSKCC)研究者在《自然·医学》发文,数据科学家Thomas Fuchs团队公布基于15000名癌症患者的4万余张数字化病理切片的新AI系统,对前列腺癌、基底细胞癌和腋窝淋巴结转移乳腺癌的测试曲线下面积(AUC)均高于0.98。
厉害的是,该系统在训练过程中使用的是来自常规病理报告的数据,并未经过事先处理,也不需病理专家对切片手动标注,因而可以纳入前所未有的庞大数据,对临床上形态多样的肿瘤病理也有了更高的识别度。
据研究者估计,如果该系统投入临床使用,在保证100%灵敏度的条件下,能够减少病理医生65-75%的无谓读片工作,大大加速诊疗进程!
通讯作者Thomas Fuchs
图源 | MSKCC
病理医生读片、诊断可以说是现代癌症诊疗的基础。然而一个世纪以来,病理医生们的工作模式却没有太大的进展,直到近年才出现了数字化病理切片以及相应人工智能技术。
但是,这并不意味着病理诊断走进数字时代。
有个段子讲,人工智能的背后都是人工。看似美好的病理AI系统,背后也是精挑细选的清晰切片,顶级病理专家们一个像素一个像素手动标注。
病理专家有多少?手动标注的工作量又是多大?有限的训练素材大大限制了AI的能力。
而且,临床上肿瘤的形态千变万化,病理切片制备过程也可能出错,切片状态不可能永远完美,AI真上了临床能有多大用武之地也是个问号。
干脆野一点儿,直接把真实世界数据丢给AI行吗?
AI将大大加速临床诊疗进程
MSKCC的研究者们就这么干了。他们调用了3个数据集,共有来自44个国家和地区的15187名癌症患者的44732个病理切片信息,包括24859个前列腺癌切片、9962个基底细胞癌切片、9894个淋巴结转移乳腺癌切片,与任何一个同类研究相比数据量都要大上一级不止。
当然,这些切片完全没有经过处理,病理报告里是什么样就原样拿来用,当然也包括了一些常见的技术问题,比如说气泡、不规则的形状、固定得不好、组织不平整等等,也有数字化过程导致的图像模糊等。
训练方法
选的癌种也有说法。
前列腺癌是名列前茅的杀手癌,而且多个研究表明,前列腺癌病理学观察比较难,病变所占面积常<1%,不同的人或者同个人不同次都可能产生不同结果,精准识片意义很大;基底细胞癌虽然并不太致命,但它是美国最常见的癌症,利用AI大批量筛查降低病理医生的工作量、加速临床效率也是很重要的。
新的AI系统基于多实例学习(MIL)和递归神经网络(RNN),以弱监督学习的方式在不同大小的数据集中进行了训练。根据研究者的观察,一般需要至少1万张切片才能够获得良好的性能,而且更大的数据集仍旧能够带来进一步的改善。
有趣的是,在不同的分辨率下,AI对不同癌种的识别敏感性是不同的,缺陷也是互补的。比如说前列腺癌的20x数据假阴性表现更好,5x数据假阳性表现更好。
AI识别的阳性、阴性和可疑切片
综合多尺度结果,前列腺癌、基底细胞癌和淋巴结转移乳腺癌三个癌种的AUC分别达到0.991、0.989、0.965!
研究者也对产生的识别误差进行了分析,主要原因还是在于扫描的切片与病理报告中的诊断并不完全一致、切片本身的质量问题等。经过矫正之后,最终的AUC均可以达到0.98以上。
识别误差的类型和数量
另外,研究者认为新的扫描技术也可能带来误差,比如不同的分辨率和色彩。这类问题可以通过混合数据训练或针对新设备微调参数解决。
新AI也在来自MSKCC的12000个切片数据集中进行了验证,最终结果AUC下降了6%。不过下降的误差主要体现在对新数据的特异性上,敏感性依旧很高。
研究者还对比了新AI和强监督学习的AI模型,其中包括CAMELYON16、拥有目前最大注释数据集的AI模型。研究者运行原数据得出的AUC为0.930,与原论文中的0.925相近。但是套用新AI的数据集之后,AUC只有0.727,下降了20%以上。
将新AI与CAMELYON16的数据集交叉训练,均是新AI表现更佳。可见纵使精细标注的切片也不足以应对临床上复杂的情况,数据量大才是王道。
交叉训练结果均为新AI更佳
在这种新AI的帮助下,病理医生的工作量将大大减少。
医生们再也不需要大海捞针一般从病理切片中寻找极其微小的病变,只要等待电脑筛查、报告可疑结果就能够快速完成诊断。特别是针对前列腺癌,医生能够足足少看75%切片!
论文通讯作者Fuchs博士是癌症AI诊疗公司Paige的联合创始人,据悉该公司已有相关产品报批FDA突破性设备认证。希望我们能够赶快在临床上见到这种新AI 大展身手。
参考资料:
https://www.nature.com/articles/s41591-019-0508-1
Ball, C. S. The early history of the compound microscope. Bios 37, 51–60 (1966).
Hajdu, S. I. Microscopic contributions of pioneer pathologists. Ann. Clin. Lab. Sci. 41, 201–206 (2011).
Ozdamar, S. O. et al. Intraobserver and interobserver reproducibility of WHO and Gleason histologic grading systems in prostatic adenocarcinomas. Int. Urol. Nephrol. 28, 73–77 (1996).
Wang, D., Khosla, A., Gargeya, R., Irshad, H. & Beck, A. H. Deep learning for identifying metastatic breast cancer. Preprint at https://arxiv.org/abs/1606.05718 (2016).
https://www.tmcnet.com/usubmit/-paige-announces-worlds-first-clinical-grade-artificial-intelligence-/2019/07/15/8986238.htm
https://www.mskcc.org/blog/researchers-report-milestone-use-artificial-intelligence-pathology

来源:https://www.toutiao.com/article/6715503075806675469
免责声明:如果侵犯了您的权益,请联系站长,我们会及时删除侵权内容,谢谢合作!
页: [1]
查看完整版本: 首个人工智能病理诊断系统问世,准确率98%